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The diffusion-governed melting that occurs when a binary melt is placed in contact 
with a pure solid is described. It is shown that if the melt superheat is much greater 
than the solid supercooling, the melt composition a t  the interface equals that of the 
solid and so thc solid will melt at a rate determined by the thermal diffusivity. 
However, as the liquid superheat decreases, chemical disequilibrium may lower the 
interface temperature and so the melt composition at  the interface increases above 
that of the solid, according to the liquidus relation. In this case the solid will dissolve 
into the liquid at  a rate determined by the solutal diffusivity. These diffusion- 
governed solutions are used to infer the different modes of convection which may rise 
when the interface between the solid and the melt is horizontal. 

The theory is generalized to investigate the diffusion-governed melting of a binary 
solid solution placed in contact with a binary melt. If the melt superheat is sufficient 
then the rate of phase change is again determined by the thermal diffusivity. In  this 
case, owing to the very small solutal diffusivity in both the solid and the liquid, the 
melt composition at the interface is nearly equal to that of the solid. This corresponds 
to the melting regime. As the liquid superheat decreases, the rate of phase change 
decreases to values determined by the solutal diffusivity in the liquid, and the melt 
composition at the interface evolves towards that of the far-field liquid. This 
corresponds to the dissolving regime. As the melt superheat decreases further, with 
the solid still changing phase into liquid, then the melt composition at  the interface 
remains approximately equal to that of the far-field melt. In  each case, a 
compositional boundary layer develops in the solid, just ahead of the interface, in 
order to restore the solid at  the interface to thermodynamic equilibrium. These 
different phase change regimes may arise if the composition of the solid is either 
higher or lower than that of the liquid. 

1. Introduction 
Cold ice cubes can melt in warm salty water, with the latent heat of melting 

supplied by the warm water ; however, relatively warm ice cubes can dissolve in cold, 
salty water with the latent heat of melting supplied by the ice. This is possible 
because ice has a range of equilibrium temperatures in aqueous salt solutions. 
Melting occurs when the heat flux supplied from the hot liquid to the interface 
cxceeds the heat flux which can be conducted away from the interface into the cold 
solid. In contrast, dissolving occurs in order to restore the melt near the interface 
with the solid to (chemical) thermodynamic equilibrium. For example, there is no 
phase change when pure ice at 0 "C is placed in contact with pure water at 0 "C; 
however, pure ice at - 1  "C may dissolve if placed in contact with salty water at 
- 1  "C. In many systems, the solutal diffusivity is much smaller than the thermal 
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diffusivity and so melting is rate limited by heat transfer while dissolving is rate 
limited by solute transfer. 

I n  this paper, we systematically investigate the effects of a variable melting 
temperature upon the melting process, motivated by their importance in many 
situations. For example, in active volcanic regions, hot molten magmas may come 
into contact with the cold wall rock of magma chambers several kilometres below the 
surface of the Earth’s crust. The mixing, melting and solidifying which ensues is 
central to the geochemical interpretation of solidified igneous intrusions and also the 
deposits from volcanic eruptions (Huppert & Sparks 1988b). Ice formations in the 
ocean may undergo significant volume changes due to  the ice-pump effect, in which 
the variation of melting point with depth (pressure) allows upwelling/downwelling 
water to melt or freeze (Lewis & Perkins 1986) ; an understanding of the oceanic ice 
budget provides important constraints upon global climate modelling. 

There have been many investigations of Stefan phase change problems ; however, 
these have mainly focused upon mono-component systems (e.g. Hill 1987). Recently, 
the effects of (i) compositional differences between the solid and the melt and (ii) fluid 
convection in the melt have been studied, particularly in the context of solidification 
(Huppert & Worster 1985; Woods & Huppert 1989, Kerr et al. 1989). There have also 
been a number of studies of the role of fluid convection upon melting. Huppert (1989) 
investigated the phase changes which occur during the forced turbulent flow of a hot 
fluid over a cold solid surface. When the solid and liquid have different, fixed melting 
and freezing temperatures, there are several different regimes in which the fluid 
solidifies or the solid melts as a consequence of the turbulent heat transfer from the 
fluid to the solid. When the heat transfer from the melt is through fluid convection, 
Huppert (1989) showed that in many situations solidification occurs first followed by 
melting ; this phenomenon has been confirmed in a recent study of Bruce & Huppert 
(1989). Huppert & Sparks (1988a, b )  investigated experimentally and theoretically 
the melting of solid into an underlying hot melt in the cases in which (i) there is 
separate thermally driven melt convection in the layer of melt and also the 
underlying liquid, as in a double-diffusive system (cf. Turner 1979) and (ii) there is 
one well-mixed layer of thermally convecting melt below the solid. They reported 
melting rates which were significantly larger than those in a purely diffusive regime 
due to the more efficient convective heat supply from the melt. In  a third paper, 
Huppert & Sparks (1988~) extended the experimental results of Campbell (1986) and 
Fang & Hellawell (1988) in which the floor of a chamber was melted by an overlying 
layer of hot but less dense melt. Woods (1991) reconsidered this situation and 
developed a simple quantitative model of the melting, driven by compositional 
convection, which agrees well with the experiments. 

In  the present paper we focus upon the effects of compositional differences between 
the solid and the melt. We analyse theoretically the diflusion-governed melting of a 
pure solid into a binary melt. Initially, we consider the case in which the solidus is 
independent of composition, so that the maximum melting temperature of the solid 
does not vary with the composition of the solid, as is the case in aqueous salt 
solutions. We note that the solid may change phase at lower temperatures if it is in 
contact with a binary liquid, and that the temperature of the interface is determined 
by the liquidus relationship. We distinguish between two forms of phase change. In  
the first, which we call melting, the rate of phase change is determined by the thermal 
diffusivity ; in the second, the rate of phase change is determined by the compositional 
diffusivity and we call this dissolving. We show that in the dissolving regime, 
relatively warm solid may dissolve into a relatively cold liquid. We calculate the 
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difference between the density of the melt a t  the solid interface and the density of the 
liquid far from the interface in order to determine the nature of the convection which 
may arise as the geometry and melt composition are varied. 

In  $4, we generalize the analysis by considering binary solid solutions. I n  this case, 
the melting temperature of the solid phase depends upon its composition ; we discuss 
the conditions under which melting and dissolving may arise. In $ 5 ,  we summarize 
the main results of our study. 

2. Diffusion-governed melting 
We analyse the diffusion-governed melting of a pure solid of end-member 

composition A and initial uniform temperature T, by an adjacent layer of binary melt 
of composition C, and temperature T, (figure 1). The composition is defined to be 
the mass fraction of the end-member B in the material. Therefore C, = 0. We assume 
that the process satisfies the constraints of thermodynamic equilibrium and that the 
melt remains static. For simplicity we consider the solid and melt to fill semi-finite 
domains; the solutions obtained from this approach will be valid in a finite domain 
up to the time when the thermal effects reach the edge of the domain (assuming the 
thermal diffusivity exceeds that of the composition) ; beyond such time caution 
should be exercised in applying the present quantitative results to a finite domain. 
The equations for the conservation of heat and composition are 

aT a2T - = K~- for z < h(t) ,  
at a22 

(2 . la )  

(2.lb) 
aT a2T _ -  - K,- for z > h(t) 
at a 2 2  

and 
ac a2c 

at a22 
-= D,- for z c h( t ) ;  C =  C, = 0 for x > A ( t ) ,  (2 . lc ,  d )  

where K,, K, are the thermal diffusivities of the liquid and solid phases, D, is the 
compositional diffusivity in the liquid phase. The position of the interface between 
the solid and the liquid is z = h(t) ,  with the solid occupying the region z > h(t) .  For 
simplicity, we assume that there is no volume change associated with the phase 
change and that there is no diffusion of composition in the solid. At the interface, 
z = h(t) ,  the boundary conditions are (Carslaw & Jaegar 1986; Kurz & Fisher 1986) 

and the equilibrium constraint 

( 2 . 2 ~ )  

( 2 . 2 b )  

(2.2c) 

where L is the latent heat and p,, p1 the solid and liquid densities. The subscript I 
represents a value evaluated at the interface and e represents a known reference 
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FIGURE 1. Path on the (T, C )  phase diagram moving from the far-field solid to the far-field melt; 
solid portions of the path represent the physical path through the system, while the dotted portion 
represents the ckange in composition as we move from solid to melt. In the dimensionless variables 
of $2, c, = 1, c, = 0. 

point in order to define the liquidus. In  ( 2 . 2 ~ )  we have assumed a linear relationship 
for the liquidus. The situation is sketched in figure 1. The theory may be extended 
t o  the general case in which T-T,  is a function of (CI-Ce); however, in most 
situations, the liquidus may be approximated locally by a linear relationship of the 
form ( 2 . 2 ~ ) .  

It is instructive to redefine the temperatures in dimensionless form (denoted 
by a carat); we set pL(C,) = 0, and scale temperatures relative to TC, (i.e. 5! = 
(T-5!L(Cm))/TCm) and compositions relative to C, (i.e. = C/C,). Therefore the 
maximum melting temperature of the solid is unity in dimensionless variables and 
the superheat of the melt Prn = (T, - T,(C,))/TC,. The system of equations admits 
a similarity solution in which h(t)  = ~ A ( K ,  t ) z  with similarity variable 7 = z / ( ~ ( K ~  t ) ; ) .  
Here, h is the dimensionless rate of phasc change from solid to liquid. The 
dimensionless temperatures and compositions are given by 

and 
e =  I + (  Q1- 1 )erfc(-:) for V < A ,  

erfc ( - A / € )  

( 2 . 3 ~ )  

(2.3b) 

( 2 . 3 ~ )  

and e,, 
dimensional form become 

are determined from the boundary conditions (2.2a, b)  which in non- 

( 2 . 4 ~ )  e, = €(€ + hF( -A/€))- l ,  

and (2.4b) 
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Combining these with (2.2c), which may be expressed as % + G I  = 1, we obtain the 
eigenvalue relationship 

- PK T,=F(-A)  sn-q- ~ ( F(A/K)+(F( !h )  

where Y(x) = xiexp ( z 2 )  erfc (x), K = ( K ~ / K $ ,  ,u = pscs/pm c,, s = (D1/~l ) i  4 1 and the 
Stefan number S = p s L / p , c ,  TC9. Note that F ( x )  is tabulated in Carslaw & Jaegar 
(1986, p. 485). In  (2.4c), T, and T, are the imposed melt and solid temperatures, and 
these implicitly determine the rate of phase change h of the solid. 

This solution extends that of Huppert & Worster (1985) in that  we are considering 
an infinite, not semi-infinite domain ; the significant differences between the following 
discussion and those of Huppert & Worster (1985) and Worster (1986) arise because 
we are considering the case in which the solid changes phase into melt, h > 0, rather 
than that of solidification in which h < 0. We assume that the solidus is independent 
of composition and so there is no scope for morphological instability of melting due 
to superheating of the solid ; this is quite different from the solidification problem in 
which the liquid may become supercooled leading to  the formation of a mushy zone. 

We now present some simple asymptotic relationships concerning limiting forms 
of the rate of phase change, A ,  and support the discussion with some numerical 
solutions. In  figure 2 we present numerical calculations of the rate of phase change 
h as a function of the superheat of the melt, for several values of the Stefan number, 
S. We consider cases in which the solid temperature is (i) greater than (2 = 0.75) (ii) 
equal to (c = 0) and (iii) less than (c = -5.0) the liquidus temperature of the melt. 

These figures reveal a number of different aspects of the phase change process. 
First, we identify conditions under which there is no phase change. In  this case, the 
heat flux supplied to  the interface from the melt equals that conducted away from 
the interface into the solid. We then discuss thc cffect of increasing the temperature 
of the melt, and this leads to a natural distinction between melting and dissolving. 

2.1. Conditions for no melting 

First, we note from ( 2 . 4 ~ )  that  0 < C, < 1 and therefore 0 < TI < 1. It follows from 
(2.4b) that  when 2 > 0 the minimum value of the non-dimensional rate of phase 
change, A ,  satisfies Amin > 0. This means that whenevcr the solid temperature 
exceeds the liquidus temperature of the far-field liquid, chemical disequilibrium 
requires that the solid changes phase into melt, as may be seen in figure 2 (a) in which 
2 = 0.75. 

= 0, figure 2(b), there is an equilibrium solution h = 0 in which c = Prn and 6, = 1. As pm is increased, the interfacial temperature increases and hence 
the interfacial composition decreases. Therefore the solid changes phase in order to 
accommodate the flux of solute from the far-field liquid and maintain thermodynamic 
equilibrium. 

I n  the situation in which 2 < 0 (figure 2c) there is an equilibrium state in which 
there is no melting and the diffusion of heat from the melt into the interface balances 
the diffusion of heat from the interface into the solid. Again, this requires h = 0 and 
so e1 = 1 and = 0. The conservation of heat across the interface may be expressed 
mathematically from (2.4b) as 

We deduce that in order for the solid to  change phase when 2 < 0, the melt must 
possess superheat, 9, > -K,ue. 

I n  the case 

P, = K p q  (2.5) 
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FIQURE 2. Non-dimensional rate of phase change, A,  of the interface between the solid and the melt 
as a function of the melt superheat for (a) T, = 0.75, ( b )  T, = 0 and (c) T, = -5.0. Curves are labelled 
with four different values of the Stefan number, 0.1, 1.0, 10.0, 100.0, and E is equal to 0.1. 

2.2. The dissolving and melting regimes 

We now consider how the similarity solutions change as the initial temperature of the 
liquid is increased beyond the equilibrium value given by (2.5), and the solid changes 
phase into melt. At the equilibrium temperature, the interface composition equals 
that of the far-field liquid ; therefore, as the liquid temperature is increased and hence 
the interface temperature increases, the interface composition must decrease in order 
to remain in thermodynamic equilibrium. While the interface composition exceeds 
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that of the solid, solute must diffuse from the far-field liquid to the interface in order 
to effect this change in composition. Therefore the rate of phase change is limited by 
the rate at which composition may diffuse from the far field to the interface. We 
describe this process as dissolving. As the liquid temperature is increased from the 
equilibrium value, the interface temperature also increases, and so the heat flux 
which may be conducted away into the solid increases. This tends to suppress any 
increase in the rate of phase change and so initially the rate of phase change only 
increases relatively slowly. 

However, for sufficiently large liquid superheat, the interface composition becomes 
approximately equal to that of the solid, the interface temperature becomes fixed 
and the rate of phase change is no longer constrained by the need to diffuse solute 
from the liquid to the interface. Therefore, since the interface conditions are fixed, 
on increasing the liquid temperature further, the rate of phase change increases more 
rapidly per unit increase in liquid temperature. We describe this phase change regime 
as melting rather than dissolving. In figure 2 ,  the points of inflexion correspond to the 
smallest far-field liquid temperature at  which the composition of the interface melt 
is approximately equal that of the solid ; for liquid temperatures greater than this 
value, the phase change process becomes one of melting rather than dissolving. 

The dissolving regime 
In  the limit 0 < prn +KpE < 1, which corresponds to a small perturbation from the 

equilibrium state, (2.5), we expect that the rate of phase change is small. Guided by 
the above qualitative description of dissolving, we now show that the rate of phase 
change is indeed limited by the diffusion of solute in the liquid. In this limit, (2 .4b)  
implies that the interface temperature $ - Fm + K p e / ( l  +Kp)  < 1, assuming 
S = O(1) as is usually the case. However, the liquidus relation eI+$ = 1 now 
requires that 1 - 6, < 1. Therefore, from (2.4a), we deduce that A = O(E)  and so the 
rate of melting is determined by the rate of diffusion of composition. Indeed, at time 
t ,  the molten solid has a thickness h(t) = 2 A ( ~ ~ t ) f  - O((Dt)f) and this corresponds to 
the thickness of the diffusive compositional boundary layer. In contrast, the thermal 
boundary layer, which scales as ( K ~  t);, extends far beyond the layer of molten solid 
and into the original liquid. 

We have plotted the thermal and compositional boundary-layer structures 
appropriate for this dissolving regime in figure 3 (a) .  In summary, dissolving occurs 
in order to maintain the interfacial melt in (chemical) thermodynamic equilibrium, 
since the composition of the melt at  the interface differs from the composition of both 
the solid and liquid. Furthermore, the rate of production of molten solid is 
constrained by the rate at which the solute may diffuse from the far field into the 
newly formed melt. 

The melting regime 

points in figure 2, and 
When the temperature of the far-field liquid is greater than that at  the inflexion 

(2.6) 
1 1 prn %KP , ; +- F(-h) F(A/K)  F ( - A )  F(A/K)'  

then in order that the interface be in thermodynamic equilibrium, with $ - 1,  the 
equation for the conservation of heat at  the interface, (2 .4b) ,  requires h - O( 1). We 
can immediately conclude from ( 2 . 3 ~ )  that, after a time t ,  the thickness of the melt 
produced from the solid, h(t)  ly O ( ( K ~  t):) % (Q t):. Thus, the solution ( 2 . 3 ~ )  shows that 
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FIGURE 3.  Profiles of T-T, and C - C ,  in the melt ahead of the melting interface for (a)  a 
dissolving interface ( A  = 0.02) and ( b )  a melting interface ( A  = 0.5). In  both cases, S = 1 and E = 0.1. 
In  the melt, the dimensionless position, 7 < A  ; 7 = 0 corresponds to the initial position of the 
soiid/liquid interface. For convenience of plotting, the temperature T -  T, has been re-scaled with 
respect to the dimensionless far-field melt temperature, which may be deduced from figure 2. 

the composition in the melt only varies across a diffusive boundary layer, of 
thickness (0, t):, which is located a t  the original position of the interface between the 
solid and the liquid, z = 0. In  the layer of molten solid between the actual solid 
interface and this compositional boundary layer, the composition is virtually 
identical to that of the solid; in the limit h p E it satisfies 

We have plotted a numerical solution showing the structure of the compositional 
and thermal boundary layers in the melting regime, h N O( i) ,  in figure 3 ( b ) .  We can 
see that the thermal boundary layer extends from the interface between the molten 
solid and the solid throughout the zone of molten solid, while the compositional 
boundary layer is localized at the boundary between the molten solid and the original 
liquid, away from the solid boundary. 

I n  summary, in the melting regime, the composition of the interface equals that 
of the solid and so the interface temperature is also fixed and equals the liquidus 
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FIGURE 4. Interfacial composition as a function of the rate of phase change A. In  this figure E = 0.1. 

temperature of the solid; therefore, the phase change is driven purely by the 
superheat of the liquid. Since the melt a t  the interface has the same composition as 
the solid, the compositional field does not constrain the rate of growth. In figure 2 it 
may be seen that for a given superheat, h decreases with S because more thermal 
energy is required to overcome the latent heat of fusion as the Stefan number 
increases. 

The variation in the composition of the melt a t  the interface with the rate of phase 
change is shown in figure 4. For h 2 0.2, the melt at  the interface has virtually the 
same composition as the solid, C, - 0, and so this corresponds to the melting regime. 
Only for smaller values of A, does the composition of the melt at  the interface differ 
from that of the solid. In  this case the compositional boundary layer extends right 
up to the solid and the phase change is therefore controlled by compositional 
diffusion. As may be seen from the location of the points of inflexion in figure 2, the 
minimum superheat of the liquid required for melting, rather than dissolving, 
increases with the Stefan number of the liquid. 

2.3. Further comments on dissolving 
One interesting feature of these similarity solutions, which arises as a result of the 
assumption of thermodynamic equilibrium, is that a relatively warm solid may be 
dissolved by a relatively cold liquid. Such a situation is apparent in figure 2(a) in 
which the initial temperature of the solid $ = 0.75; it may be seen that solutions 
with h > 0 exist even when the temperature of the melt satisfies 0 < @m < 0.75 in 
which case > @m. The solid dissolves into the melt to restore the system to 
equilibrium. The heat required for the phase change is supplied from the solid, whose 
temperature is greater than the liquidus temperature of the melt. By adding molten 
solid of pure end-member A,  which is of lower composition, the melt evolves towards 
the liquidus and hence equilibrium. If we specify > @m then in order that h > 0 it 
follows from (2.4b) that 8 < $. In this case, ( 2 . 4 ~ )  implies that h - O(E)  
corresponding to the dissolving regime. Now, however, heat flows from the main 
body of solid into the interface. 

In  figure 5, we show how the temperature of the far-field liquid, the interface and 
the far-field solid are related during dissolving. Dissolving occurs when the 
composition of the melt at the interface lies between that of the melt and the solid. 
In figure 5 (a), the curve labelled (i) represents the line along which the interface and 
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FIQTJRE 5. (a) Temperature of the interface as a function of the temperature of the melt with the 
initial temperature of the solid, T, = 0,0.33,0.66,1.0 as labelled. The curves labelled (i), (ii) and (iii) 
respectively correspond to T, = T,, Ti = T, and T, = T,. ( b )  Path in the (T ,C)  phase diagram 
corresponding to the curves (i), (ii) and (iii) in (a) .  

the melt have the same temperature. In  this case, the solid has a higher temperature, 
and provides a source of thermal energy to allow a phase change from solid to liquid 
a t  the interface. Although there is no heat transfer in the isothermal melt region, 
there is a solute transfer between the dissolving interface and the melt ; this decreases 
the composition of the liquid near the interface and hence the melt evolves towards 
the liquidus following the path (i) shown in figure 5 ( b ) .  The line (ii) in figure 5 ( a ) ,  
represents the line along which the solid and the interface have the same temperature. 
In  this case the melt has a higher temperature than the interface and provides the 
thermal energy to dissolve the interface. Therefore, in this case, there is diffusion of 
both heat and solute in the liquid while the solid remains isothermal. The melt now 
evolves towards the liquidus along the path (ii) shown in figure 5 ( b ) .  The line (iii) on 
figure 5(a) ,  which lies between lines (i) and (ii), represents the line along which the 
solid and melt have the same temperature. In  this case the interface temperature is 
lower than both the solid and the melt; the thermal energy required to melt the 
interface is supplied from both the solid and the melt, and the melt evolves towards 
the liquidus along the intermediate path (iii) shown on figure 5 ( b ) .  
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FIGURE 6. The rate of phase change (dissolving) as a function of the composition of the liquid, when 
both the liquid and solid temperatures equal the maximum melting temperature of the solid. 
Curves are shown for four Stefan numbers ; these are defined by reference to the situation in which 
the liquid has unit composition. 

To clarify the distinction between melting and dissolving, it is instructive to note 
how the rate of phase change depends upon the compositional difference between the 
solid and the liquid. In figure 6 we show how the rate of phase change increases as 
the liquid composition is increased from that of the solid, with all other properties 
fixed. In the figure we have fixed the far-field temperature of both the liquid and solid 
to equal the liquidus temperature corresponding to the solid composition, i.e. the 
maximum temperature at which material can exist as solid. Therefore when the 
liquid composition is also zero, there is no phase change. For this particular figure, 
we have non-dimensionalized all compositions with respect to the far-field liquid 
composition, and all temperatures with respect to the corresponding change in the 
liquidus temperature, r. It may be seen that as the far-field composition of the liquid 
is increased, the liquidus relation forces the interface temperature to decrease (as in 
case (c) of figure 5 ) ,  and so melt begins to form from the solid. The corresponding 
increase in the composition of the melt at the interface accommodates the greater 
flux of solute supplied to the interface from the liquid. The reduction in the interface 
temperature increases the heat transferred to the interface from both the solid and 
liquid and therefore rate of phase change increases. This example isolates the role of 
composition dissolving, since in this example, when the liquid and solid have the 
same composition, there is no phase change. 

The difference between melting and dissolving is very important in determining 
the form of the fluid convection which may arise at  the interface. In the case of 
dissolving, the melt in the boundary layer above the interface has a rapid variation 
in composition and may be subject to a compositional Rayleigh-BBnard type of 
instability. In the case of melting, the melt in the boundary layer above the interface 
has nearly constant composition, but the temperature varies. If the density field is 
dominated by variations in composition, then this melt may be subject to a hybrid 
compositional Rayleigh-Taylor type of instability. We describe this in greater detail 
in the next section. 
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FIGURE 7 .  Density difference between the far-field melt and the interfacial melt as a function of the 
melting rate, A ,  for T, = 1.0, -1.0, -3.0, -5.0, as shown on the curves, with a = O.OOO1 and 
/s = 0.01. 

3. Interfacial density and the convective regimes 
In order to determine the stability of these diffusive solutions to convection in the 

melt, the density difference between the far-field melt and the interface was 
calculated. These calculations assume that the melt density satisfies the relationship. 

p = p0-aT+/3C. (3.1) 

In general, the density depends much more strongly upon the composition than the 
temperature, a//3 - 0.01, and this is shown in the lines of constant density on the 
phase diagram (figure 1). We assume a > 0 as is usually the case. In figure 7 we have 
plotted the density difference between the far-field melt, pm, and the melt at  the 
interface, pr, as a function of A,  the similarity melting rate, in the case /3 > 0 
corresponding to melting the less dense pure end-member solid. Curves are given for 

= 1.0, -1.0, -3.0, -5.0. For small values of A ,  the density of the interfacial melt 
is smaller than the far-field melt. This is because the interfacial composition is 
smaller than that of the far-field melt (figure 4), and for small A,  the far-field melt 
temperature is relatively small (figure 2), so that the compositional differences 
dominate the density difference (3.1). However, as the melt temperature and hence 
h increase, the melt density eventually falls below that of the interface. We remark 
that in many laboratory situations the melt superheat is relatively small and so the 
interfacial melt will be buoyant relative to the far-field melt. However, as in figure 
7,  for much higher superheats, the interfacial melt will be relatively heavy. In 
contrast, when /3 < 0, which corresponds to melting the heavy pure end-member 
solid, the density of the hot far-field liquid is always less than that of the melt at  the 
interface. Using the analysis of Turner (1979) and these results, we can now infer the 
convective regimes which may arise in the melt as a function of the net destabilizing 
Rayleigh number. The convective regimes (figures 8 and 9) depend upon whether the 
melt lies above or below the solid, and upon whether /3 > 0 or /3 < 0. 

Three cases arise when the solid lies above the liquid. In all three cases the molten 
solid is colder than the underlying liquid and hence is always thermally unstable 
(ignoring effects such as the density maximum in water at 4 "C). If /3 > 0, the melt 
is compositionally stable and hence may be absolutely stable and float above the 
liquid (figure 8a).  A double-diffusive interface then develops between the melt and 
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FIQURE 8. The modes of convection which may develop when solid is melted by an underlying 
liquid to produce melt which is (a) compositionally light and statically stable, but with each layer 
unstable to thermal convection for sufficiently high thermal Rayleigh number ; (b) compositionally 
light but absolutely unstable due to thermal instability and so for sufficiently high net Rayleigh 
number convection sets in, and for very large net Rayleigh number this results in a well-mixed, 
convecting melt (Huppert & Sparks 1988b) ; and (c) compositionally heavy and absolutely unstable 
and so for sufficiently high total Rayleigh number convection sets in (cf. Turner 1979). 

the liquid; either layer may begin to convect thermally if the thermal Rayleigh 
number for the layer becomes sufficiently large; the layers retain their identity, with 
heat transfer but little mass transfer across the interface (Turner 1979; Huppert & 
Sparks 1988a). This situation has been described in detail by Huppert & Sparks 
( 1 9 8 8 ~ ) .  However, again with p > 0, the thermal destabilization may exceed the 
stabilizing effect of composition; now the melt is absolutely unstable and for 
sufficiently large net destabilizing Rayleigh number, whole scale mixing may ensue 
(figure 8 b ) ;  alternatively, in this case as the cold melt sinks it may heat up and 
become buoyant, rising back up to the interface (Huppert & Sparks 1 9 8 8 ~ ) .  When 
p < 0, the composition of the molten solid is greater than the liquid, and so the 
interfacial melt is statically unstable due to both composition and temperature ; for 
sufficiently large net Rayleigh number (Turner 1979), the melt will sink into the 
liquid and mix vigorously (figure 8 c ) .  

Three cases also arise when the solid is below the liquid. Now, the cold molten solid 
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is thermally stable with respect to the overlying melt (again ignoring density 
reversals with temperature as occurs at  4 "C in water). If the molten solid is 
compositionally buoyant (p > 0) ,  it may either be a,bsolutely buoyant or statically 
stable. If the molten solid is absolutely buoyant, then, for sufficiently large net 
Rayleigh number, it  will rise and mix into the overlying liquid as shown in figure 
Q(a) .  If,8 > 0, but the molten solid is statically stable relative to  the overlying liquid, 
then it will be unstable to salt-finger type of convection, owing to the difference in 
the rate of diffusion of heat and salt (Turner 1979) and a convecting finger interface 
may develop (figure 9b). This situation has been discussed by Campbell (1986), 
Fang & Hellawell(1988), Huppert & Sparks (1988~)  and Woods (1991). Woods noted 
that the finger convection may be suppressed, since the rate of melting and hence the 
supply of fresh but cold melt is small, giving rise to an essentially diffusive process. 
The third case arises when /3 < 0 and the molten solid is compositionally and 
therefore absolutely stable ; in this case the system remains static for all time, figure 
9(c), and all heat and mass transfer is diffusive; this is the situation which we 
analysed in $ 2 .  
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FIGURE 10. Phase diagram in the case in which both the liquidus and solidus depend upon 
temperature and composition. 

4. Melting and dissolving a binary solid solution 
We now consider the different situation in which the melting temperature of the 

solid, defined by the solidus curve, is a function of both the composition and 
temperature (figure 10). We restrict attention to solid of uniform composition ; 
although the fundamental principles remain the same, the problem becomes 
considerably more involved if the solid composition is allowed to vary with depth. 
For simplicity, in the following discussion we describe solid of composition smaller 
than the eutectic composition ; however, analogous results apply for solid of 
composition greater than eutectic. 

In thermodynamic equilibrium, solid of composition X may only rise above its 
solidus temperature T,(C) by selective melting, such that its composition changes and 
therefore the relevant local solidus temperature increases ; such changes in the 
composition of the solid are controlled by diffusion of solute within the solid and 
therefore occur very slowly. However, owing to the much larger value of the thermal 
diffusivity in comparison to the solutal diffusivity in the solid, some constitutional 
superheating may develop in the solid just ahead of the interface. This process is 
similar to the development of constitutional supercooling in the liquid ahead of a 
solidifying interface, which is caused by the diffusion of solute in the liquid region 
and which results in the well-known morphological instability (Mullins & Sekerka 
1964). Woodruff (1968) has carried out a full stability analysis for such a melting 
interface, including the diffusion of solute in both the solid and liquid phases. His 
results show that, in contrast to solidifying interfaces, melting interfaces generally 
remain stable and planar, owing to the very small diffusivity of solute in the solid and 
the stabilizing effect of solute diffusion in the liquid, even if there is some 
superheating in the solid ahead of the interface. Therefore, in the following analysis, 
we assume that the interface between the solid and liquid remains planar. 

The composition of the solid and the melt at the interface are related by the 
partition coefficient k, such that 

c.1, = kC, 1 - * (4.1) 

In general k is a function of the composition; however, for simplicity, in the 
following analysis we assume that it is a constant. The equations for the conservation 
of heat are identical to those describing the melting of a pure solid, presented in $2. 

15 FLM 239 
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However, solute may now diffuse in the solid so that (2.1 d )  is replaced by a diffusion 
equation 

a 2 c  
-=Ds-- for z > h(t)  
aC 
at az2 

and the boundary condition (2.26) is replaced by the more general relation 

(4.3) 

where C, is the melt composition at  the interface. This more general problem has 
solutions similar to (2.3a-c) but the composition in the solid now has the form 

(4.4) 

where 6 = ( D s / ~ $  -+ E .  The eigenvalue relation ( 2 . 4 ~ )  is readily generalized to the 
form 

(kC , -C , )  = - A ( l - k ) C , .  & s 
f ( - A / & )  (C'-1)ffm (4.5) 

This expression allows us to investigate the different phase change regimes from solid 
into liquid, in order to generalize the discussion of $2. 

4.1. The melting regime 

Whenever the far-field melt has a large superheat such that A - O( 1) and the rate of 
melting is determined by the thermal diffusivity, then the composition of the melt 
a t  the interface C, - C,, the solid composition. Therefore, in this case of rapid phase 
change, a layer of molten solid, with the same composition as the far-field solid forms 
behind the melting front, and there is a compositional boundary layer embedded in 
the liquid, at the original position of the solid. This is identical to the melting regime 
described in $2 and shown in figure 3(6). This solution regime is sketched in figure 
11 (a).  

The narrow compositional boundary layer ahead of the melting interface, in the 
solid, as given by (4.4) is purely an artifact of the assumption that the solid remains 
in equilibrium at the interface with the liquid. Apart from this narrow compositional 
boundary layer in the solid, we can obtain an identical solution if we assume that the 
solid is of fixed composition and allow the solid to support superheat. Whether such 
a compositional boundary layer develops in reality must be tested experimentally, 
since solid can support some superheat before melting. In either case, the solid just 
ahead of this compositional boundary layer becomes superheated owing to the more 
rapid diffusion of heat than solute in the solid. 

4.2. The dissolving regime 

As the melt superheat is reduced, the rate of phase change decreases and eventually 
A - O ( E ) .  In this regime, (4.5) reduces to the form 

which is identical to  (2.46). As A decreases, the dimensionless composition of the melt 
a t  the interface, C,, evolves from that of the far-field solid towards that of the far- 
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Towards far-field 
temperature f 
\ Liquidus 

FIQLJKE 11. Three situations which may arise when a binary solid is placed in contact with a binary 
liquid and melt is produced from the solid. In these figures, the solid is of smaller composition than 
the liquid and is (a) melting; (b) dissolving; (c) slowly dissolving. The solid portions of the path 
represent the physical path through the system, while the thinner portion represents the change 
in composition as we move from solid to melt. 

field liquid, which has dimensionless value unity. This is very similar to the 
dissolving regime described in $2, and the composition of the melt a t  the interface 
changes according to  the graph shown in figure 4. The composition of the melt a t  the 
interface evolves towards that of the liquid as the dissolution rate decreases because 
the rate of production of melt is now comparable to  the rate of diffusion of solute in 
the liquid (as in figure 3a).  This solution regime is sketched in figure 11 ( b ) .  

Again, the imposition of thermodynamic equilibrium upon the solid at the 
interface with the liquid results in the prediction of a very narrow boundary layer in 
the solid just ahead of the interface; however, now the solid composition adjusts 
diffusively from the far-field solid composition C, to the value kC, across this 
boundary layer. However, as in the melting regime, (4.6), which is valid in the limit 
h B 8, shows that apart from the narrow compositional boundary layer in the solid, 
we would obtain the same solution by assuming that (i) the solid was of fixea 
composition and (ii) before melting the solid can support superheat. 

16-2 
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As the superheat of the melt is further reduced, h decreases such that A 4 6 .  In  this 
case, (4.5) reduces to the simple form C, = 1, so the composition of the melt a t  the 
interface becomes equal to that of the liquid in the far field. This regime represents 
slow dissolution of the solid and is sketched in figure 11 (c) .  In  order that  the solid a t  
the interface remains in equilibrium, the compositional boundary layer in the solid 
effects the solute transfer to or from the solid a t  the interface as the solid changes 
phase into melt. The three types of solution shown in figure 5 may develop in this 
slow dissolution regime. 

Note that in the slow dissolution regime, the composition of the solid a t  the 
interface may be greater or smaller than that of the solid in the far field, depending 
upon the composition of the far-field melt relative to that of the far-field solid, since 
the solutal diffusivity in the solid is much smaller than that in the liquid. As in $2, 
we deduce from the thermodynamic relation (2.4b) that, in the dissolving regime, 

Verhoeven & Gibson (1971 a ,  b )  carried out some experiments in which Sn-Si and 
Sn-Bi alloys were directionally melted in a crucible. At a particular point in each of 
their experiments, the material was rapidly quenched to preserve the structure of the 
phase change interface and the resulting quenched solid was examined by 
metallographic techniques. Based upon evidence that small pockets of partial melt 
developed ahead of the main solid/liquid interface, Verhoeven & Gibson (1971 a,b)  
deduced that the solid became constitutionally superheated ahead of the melting 
interface. In  the Sn-Bi experiments this partial melt region took on several forms: 
a t  high temperature gradients, a network of interconnected cylindrical channels 
developed, while a t  lower temperature gradients a cellular interface type structure 
developed. We believe that these pockets of partial melt formed at grain boundaries, 
which act as nucleation sites for melting. The melting which occurs a t  these grain 
boundaries will be controlled by kinetic effects and so we expect that this solid can 
support some superheat. 

However, the photographs from the experiments of Verhoeven & Gibson indicate 
that there are only a relatively small number of pockets of partial melt, corresponding 
to the finite number of grain boundaries. Furthermore, the spacing between grain 
boundaries is relatively large compared to the very small lengthscale of diffusion of 
solute in the solid over the timescale of the propagation of the phase change front. 
Therefore, the majority of the solid behind the liquid interface remained as 
superheated solid of the original solid composition and the majority of the phase 
change occurred at the planar interface between the solid and liquid. These 
observations are in general accord with the model we described above. In  our model, 
we ignore the development of pockets of partial melt ahead of the main interface 
between the solid and liquid. To leading order, this is a valid approximation because 
they represent only a very small fraction of the solid, and therefore, they have only 
a negligible effect upon the conservation of heat. The observation of such pockets of 
melt is important, however, since i t  confirms our model of the development of 
superheat in the solid ahead of the compositional boundary layer. 

Tm-2(1-Cm)+T, = O ( 6 ) .  

4.3. Implications for convection 
Owing to  the similarity in the phase change processes, much of the discussion of $3 
concerning the possible modes of convection which may arise during the melting of 
a pure solid also applies during the melting of a binary solid solution. However, we 
are able to extend the discussion to consider both melt and solid of arbitrary binary 
composition. 
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5. Conclusions 
We have investigated the melting of a binary alloy into a binary melt in two 

situations. First we considered the case when solid composed of one pure end- 
member is placed in contact with a binary liquid. We have obtained similarity 
solutions which describe the diffusion-controlled phase change of the solid into melt. 
If the melt superheat is very large, the process is controlled by the thermal 
diffusivity ; the composition of the melt a t  the interface equals that of the solid and 
so the interface temperature equals the maximum melting temperature of the solid. 
We call this process melting. As the melt superheat is reduced, the temperature of the 
interface eventually decreases below this maximum melting temperature ; therefore, 
the composition of the melt a t  the interface differs from that of the solid since it is 
constrained by the liquidus relationships. Now, the phase change becomes controlled 
by the compositional diffusivity in the liquid, because solute must be supplied to the 
melt at  the same rate as it changes phase. We describe this process as dissolving. 
During dissolving, the composition of the liquid at the interface differs from both 
that of the solid and liquid and so we conclude that the process of dissolving is driven 
by chemical disequilibrium. Only when the composition of the liquid at  the interface 
equals that of the far-field liquid can the phase change cease. As a consequence, when 
the temperature of the far-field solid exceeds the liquidus temperature corresponding 
to the far-field liquid composition, the solid always dissolves into the liquid if the 
system is to remain in thermodynamic equilibrium. 

We have discussed the convective stability of melting and dissolving in the cases 
in which the solid is melted from either above or below and the melt is relatively light 
or heavy compared to the molten solid. During the melting process the melt may 
exhibit salt-finger-type convection, double-diffusive type convection, fully turbulent 
convection or it may remain static, as summarized in figures 8 and 9. 

Next we analysed the situation in which the solid is a solution of both components, 
with the melting temperature of the solid (the solidus) a function of both the 
temperature and composition of the solid. We have shown that the simple results for 
a pure solid may be simply adapted to model this situation as well. Owing to the very 
small solutal diffusivity in the solid, the composition of the melt at the interface is 
determined by the rate of diffusion of solute in the liquid in comparison with the rate 
of phase change. When the rate of phase change is very large, the composition of the 
melt at  the interface equals that of the solid in the far field ; this is the melting regime. 
When the rate of phase change decreases and is controlled by the rate of diffusion of 
solute in the liquid, the composition of the melt at  the interface evolves towards the 
composition of the melt in the far field. This corresponds to the dissolving regime. 

As one example, these results have important implications for the intrusion of a 
magma of one temperature and composition into a magma chamber whose bounding 
walls are composed of magma of different composition and temperature. The model 
provides simple constraints which determine whether the solid walls of the chamber 
will melt back. Furthermore, we have shown that when a solid changes phase 
rapidly, the melt so produced has the same composition as the solid, while if the 
phase change occurs more slowly then the melt produced from the solid may have a 
different composition from that of the solid, depending upon the composition of the 
liquid. 

This work has benefitted from discussions with Professors H. E. Huppert and 
M. G. Worster and very careful, helpful and critical reviews from three anonymous 
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at the Institute of Geophysics and Planetary Physics, Scripps Institute of 
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